Abstract

Beta gallium oxide (β-Ga2O3) shows significant promise in high-temperature, high-power, and sensing electronics applications. However, long-term stable metallization layers for Ohmic contacts at high temperatures present unique thermodynamic challenges. The current most common Ohmic contact design based on 20 nm of Ti has been repeatedly demonstrated to fail at even moderately elevated temperatures (300–400 °C) due to a combination of nonstoichiometric Ti/Ga2O3 interfacial reactions and kinetically favored Ti diffusion processes. Here, we demonstrate stable Ohmic contacts for Ga2O3 devices operating up to 500–600 °C using ultrathin Ti layers with a self-limiting interfacial reaction. The ultrathin Ti layer in the 5 nm Ti/100 nm Au contact stack is designed to fully oxidize while forming an Ohmic contact, thereby limiting both thermodynamic and kinetic instability. This novel contact design strategy results in an epitaxial conductive anatase titanium oxide interface layer that enables low-resistance Ohmic contacts that are stable both under long-term continuous operation (>500 h) at 600 °C in vacuum (≤10−4 Torr), as well as after repeated thermal cycling (15 times) between room temperature and 550 °C in flowing N2. This stable Ohmic contact design will accelerate the development of high-temperature devices by enabling research focus to shift toward rectifying interfaces and other interfacial layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call