Abstract

Artificially engineered metasurfaces provide extraordinary wave control at the subwavelength scale. However, metasurfaces proposed so far suffer due to limited bandwidths. In this paper, extremely thin metasurfaces made of single metallic layer is experimentally presented for ultra-wideband operation from 9.3 to 32.5 GHz (with a fractional band of 112%), working at both transmission and reflection modes simultaneously. The phase control is achieved by azimuthally rotating the scatterer based on Pancharatnam-Berry phase principle. Nearly uniform efficiency (≈25%), approaching the theoretical limit of the infinitely thin metasurface, is achieved throughout the operation band. Finally, the proposed design is implemented for applications, e.g., the generation of electromagnetic waves carrying orbital angular momentums as well as anomalous reflections and refractions. The metasurfaces are characterized numerically and experimentally and the results are in good agreements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.