Abstract

Due to the novel physical properties, high flexibility, and strong compatibility with Si-based electronic techniques, 2D nonlayered structures have become one of the hottest topics. However, the realization of 2D structures from nonlayered crystals is still a critical challenge, which requires breaking the bulk crystal symmetry and guaranteeing the highly anisotropic crystal growth. CdTe owns a typical wurtzite crystal structure, which hinders the 2D anisotropic growth of hexagonal-symmetry CdTe. Here, for the first time, the 2D anisotropic growth of ultrathin nonlayered CdTe as thin as 4.8 nm via an effective van der Waals epitaxy method is demonstrated. The anisotropic ratio exceeds 103 . Highly crystalline nanosheets with uniform thickness and large lateral dimensions are obtained. The in situ fabricated ultrathin 2D CdTe photodetector shows ultralow dark current (≈100 fA), as well as high detectivity, stable photoswitching, and fast photoresponse speed (τrising = 18.4 ms, τdecay = 14.7 ms). Besides, benefitting from its 2D planar geometry, CdTe nanosheet exhibits high compatibility with flexible substrates and traditional microfabrication techniques, indicating its significant potential in the applications of flexible electronic and optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.