Abstract
Silicon is widely studied as a high-capacity lithium-ion battery anode. However, the pulverization of silicon caused by a large volume expansion during lithiation impedes it from being used as a next generation anode for lithium-ion batteries. To overcome this drawback, we synthesized ultrathin silicon nanowires. These nanowires are 1D silicon nanostructures fabricated by a new bi-metal-assisted chemical etching process. We compared the lithium-ion battery properties of silicon nanowires with different average diameters of 100[Formula: see text]nm, 30[Formula: see text]nm and 10[Formula: see text]nm and found that the 30[Formula: see text]nm ultrathin silicon nanowire anode has the most stable properties for use in lithium-ion batteries. The above anode demonstrates a discharge capacity of 1066.0[Formula: see text]mAh/g at a current density of 300[Formula: see text]mA/g when based on the mass of active materials; furthermore, the ultrathin silicon nanowire with average diameter of 30[Formula: see text]nm anode retains 87.5% of its capacity after the 50th cycle, which is the best among the three silicon nanowire anodes. The 30[Formula: see text]nm ultrathin silicon nanowire anode has a more proper average diameter and more efficient content of SiOx. The above prevents the 30[Formula: see text]nm ultrathin silicon nanowires from pulverization and broken during cycling, and helps the 30[Formula: see text]nm ultrathin silicon nanowires anode to have a stable SEI layer, which contributes to its high stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.