Abstract

Toxic gases have surreptitiously influenced the health and environment of contemporary society with their odorless/colorless characteristics. As a result, a pressing need for reliable and portable gas-sensing devices has continuously increased. However, with their negligence to efficiently microstructure their bulky supportive layer on which the sensing and heating materials are located, previous semiconductor metal-oxide gas sensors have been unable to fully enhance their power efficiency, a critical factor in power-stringent portable devices. Herein, an ultrathin insulation layer with a unique serpentine architecture is proposed for the development of a power-efficient gas sensor, consuming only 2.3mW with an operating temperature of 300 °C (≈6% of the leading commercial product). Utilizing a mechanically robust serpentine design, this work presents a fully suspended standalone device with a supportive layer thickness of only ≈50nm. The developed gas sensor shows excellent mechanical durability, operating over 10 000 on/off cycles and ≈2 years of life expectancy under continuous operation. The gas sensor detected carbon monoxide concentrations from 30 to 1ppm with an average response time of ≈15 s and distinguishable sensitivity to 1ppm (ΔR/R0 = 5%). The mass-producible fabrication and heating efficiency presented here provide an exemplary platform for diverse power-efficient-related devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.