Abstract

Direct liquid fuel cells (DLFCs) are promising clean energy conversion devices for their high energy density, low environmental pollution, and convenient transportation and storage. However, the commercialization of DLFCs is still limited by the lack of highly active and stable catalysts for the anodic oxidation of liquid fuels. Herein, a new class of ultrathin PtRu nanowires (NWs) with a diameter of 1.1 nm was synthesized via a colloidal chemistry strategy. The as-made ultrathin PtRu NWs can not only expose large active sites but also enhance the kinetics of methanol oxidation reaction, which was confirmed by the in situ Fourier transform infrared (FTIR) spectroscopy. Consequently, ultrathin PtRu NWs exhibit greatly boosted activity and stability for methanol and ethanol oxidation reactions in an alkaline medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.