Abstract

The lack of highly active and stable catalysts with low Pt usage for the oxygen reduction reaction (ORR) is a major barrier in realizing fuel cell-driven transportation applications. A general colloidal chemistry method is demonstrated for making a series of ultrathin PtPdM (M = Co, Ni, Fe) nanorings (NRs) for greatly boosting ORR catalysis. Different from the traditional ultrathin nanosheets, the ultrathin PtPdM NRs herein have a high portion of step atoms on the edge, high Pt utilization efficiency, and strong ligand effect from M to Pt and fast mass transport of reactants to the NRs. These key features make them exhibit greatly enhanced electrocatalytic activity for the ORR and the oxygen evolution reaction (OER). Among all the PtPdM NRs, the PtPdCo shows the highest ORR mass and specific activities of 3.58 A mg-1 and 4.90 mA cm-2 at 0.9 V versus reversible hydrogen electrode (RHE), 23.9 and 24.5-fold larger than those of commercial Pt/C in alkaline electrolyte, respectively. The theoretical calculations reveal that the oxygen adsorption energy (E O ) can be optimized under the presence of step atoms exposed on the edge and ligand effect induced by Co. They are stable under ORR conditions with negligible changes after 30 000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.