Abstract

Prevention of iron corrosion in an aerated 0.1 M NaCl solution was investigated by polarization and mass-loss measurements of a passivated iron electrode covered with ultrathin and ordered films of two-dimensional polymers. The films were prepared on the passivated electrode by modification of a 16-hydroxyhexadecanoate ion HO ( CH 2 ) 15 CO 2 - self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C 2H 5O) 3Si(CH 2) 2Si(OC 2H 5) 3 and alkyltriethoxysilane C n H 2 n + 1 Si(OC 2H 5) 3 ( n = 8 or 18). Because crevice corrosion occurred at the initial stage of immersion in the solution preferentially, the edge of electrode covered with the polymer film was coated with epoxy resin. The open-circuit potentials of the covered electrodes in the solution were maintained high, more than −0.2 V/SCE for several hours, indicating that no breakdown of the passive film occurred on the surface. The protective efficiencies of the films were extremely high, more than 99.9% unless the passive film was broken down. The efficiencies after immersion for 24 h almost agreed with those obtained by mass-loss measurements. X-ray photoelectron spectroscopy and electron-probe microanalysis of the passivated surface covered with the polymer film after immersion in the solution for 4 h revealed that pit initiation on the passive film was suppressed by coverage with the polymer film completely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.