Abstract

We have created hybrid organic−inorganic nanoarchitectures by electrodepositing ultrathin (<10-nm-thick) polymer coatings onto nanostructured MnO2 birnessite-type electrodes with surface areas in excess of 200 m2 g-1. By choosing a self-limited growth process, based on the electropolymerization of o-phenylenediamine, the resulting polymer conformally coats the oxide nanoscale network without disrupting the continuous mesoporosity of the initial MnO2 nanoarchitecture. These polymer coatings serve as pinhole-free physical barriers to external, acidic electrolyte, specifically, H2O and hydrated protons, and protect the underlying MnO2 nanoarchitecture from dissolution. The underlying metal oxide remains electrochemically addressable via an electrochemical proton-gating mechanism in which charge-compensating unsolvated protons are transported through the polymer coating. The 3D-templated electrochemical fabrication of polymer at an electrified metal oxide nanoarchitecture provides a new model for the developm...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.