Abstract

Carbon-based materials are emerging as a type of inexpensive and efficient adsorbent, although their genuine adsorption site is still debatable. Herein, we present a novel approach for designing and constructing an ultra-thin defect-rich hierarchically porous carbon nanosheet (ZG-C). The ZG-C sample demonstrated a high adsorption capacity for bisphenol A (BPA) (602.2 mg/g) along with a fast adsorption process (20 min), and stable reusability (the decline efficiency was 9.14% after five consecutive cycles). Based on comprehensive experiments and a number of characterizations, the high adsorption capacity of ZG-C for BPA was connected with the hierarchical porous structure of ZG-C and multiple intrinsic defects of ZG-C. The results of density functional theory (DFT) further demonstrated that topological defects played an indispensable role in promoting adsorption, and its adsorption energy (−0.595 eV) for BPA was much higher than that of other intrinsic defects. This study not only provides an innovative and simple strategy for preparing hierarchically porous carbon-based adsorbent with abundant intrinsic defects for the efficient removal of BPA, but also significantly contributes to the understanding of the application of carbon-based materials to remove bisphenols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call