Abstract

Surfactant-free, freestanding, and hierarchical two-dimensional (2D) polycrystalline cobalt oxide (Co3O4) nanosheets with enriched oxygen vacancies (Co3O4-VO) were synthesized by a topotactic conversion via rapid calcination of the solvothermally synthesized ultrathin cobalt oxide hydrate (CoOxHy) nanosheets. The topochemically transformed Co3O4-VO outperforms the as-synthesized P123-encapsulated CoOxHy nanosheets and their conventionally calcined Co3O4 counterpart for both electrochemical oxygen evolution and 5-hydroxymethylfurfural (HMF) oxidation to 2,5-furandicarboxylic acid (FDCA), owing to their largely preserved 2D structure and elimination of P123 for abundant exposed surface active sites. More importantly, the strain-induced oxygen vacancies at grain boundaries of Co3O4 nanocrystallines are also proposed to be responsible for the improved electrooxidation performance. Furthermore, Co3O4-VO exhibits remarkable long-term stability during the chronoamperometric test in 1 M KOH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.