Abstract

Controlling the morphology and composition of nanocatalysts constructed from metals and conductive polymers has attracted attention owing to their great potential for the development of high-efficiency catalysts for various catalytic applications. Herein, a facile synthetic approach for ultrathin-polyaniline-coated Pt-Ni nanooctahedra (Pt-Ni@PANI hybrids) with controllable PANI shell thicknesses is presented. Pt-Ni nanooctahedra/C catalysts enclosed by PANI shells with thicknesses from 0.6 to 2.4 nm were obtained by fine control over the amount of aniline. The various Pt-Ni@PANI hybrids exhibited electrocatalytic activity toward the methanol oxidation reaction that is highly dependent on the thickness of the PANI shell. Pt-Ni@PANI hybrids with the thinnest PANI shells (0.6 nm) showed markedly improved electrocatalytic performance for the methanol oxidation reaction compared with Pt-Ni@PANI hybrids with thicker PANI shells, Pt-Ni nanooctahedra/C, and commercial Pt/C due to synergistic benefits of ultrathin PANI shells and Pt-Ni alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call