Abstract
AbstractSkin‐based electrical‐signal monitoring is one of the basic and noninvasive diagnostic methods for observing vital signals that contain valuable information about the dynamic status of the inner body. Soft bioelectronic devices are developed for the acquisition of high‐quality biosignals by taking advantage of their inherent thin and soft bodies. Among these devices, the organic electrochemical transistor (OECT) is a promising local transducing amplifier because of its key advantages, such as low operating voltage, high transconductance, and biocompatibility. However, the transistor's direct electrolyte‐gated operation limits its ability to measure biosignals only when the electrolyte exists. Here, an ultrathin OECT‐based wearable electrophysiological sensor based on a thin (≈6 µm) and nonvolatile gel electrolyte is reported, which can operate on dry biological surfaces. This sensor can measure biopotentials with a high mechanical stability and high signal‐to‐noise ratio (24 dB) even from dry surfaces of the human body and also shows stable performance during long‐term continuous monitoring and multiple reuse in a test that lasted more than a week.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.