Abstract

Flexible piezosensing electronic skins (e-skins) have attracted considerable interest owing to their applications in real-time human-health monitoring, human-machine interactions, and soft bionic robot perception. However, the fabrication of piezosensing e-skins with high sensitivity, biological affinity, and good permeability at the same time is challenging. Herein, we designed and synthesized Mo2S3 nanowires by inserting ∞1[Mo2+S] chains between MoS2 interlayers. The resulting Mo2S3 nanowires feature high conductivity (4.9 × 104 S m-1) and a high aspect ratio (∼200). An ultrathin (∼500 nm) Mo2S3 nanowire network was fabricated using a simple liquid/liquid interface self-assembly method, showing high piezoresistive sensitivity (5.65 kPa-1), a considerably low pressure detection limit (0.08 Pa), and gratifying air permeability. Moreover, this nanowire network can be directly attached to human skin for real-time human pulse detection, finger movement monitoring, and sign language recognition, exhibiting excellent potential for health monitoring and human-machine interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call