Abstract
Herein, a simple, economical and low temperature synthesis of leaf-shaped CuO nanosheets is reported. As-synthesized CuO was examined through different techniques including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), fourier transform infrared spectroscopic (FTIR) and Raman spectroscopy to ascertain the purity, crystal phase, morphology, vibrational, optical and diffraction features. FESEM and TEM images revealed a thin leaf-like morphology for CuO nanosheets. An interplanar distance of ~0.25 nm corresponding to the (110) diffraction plane of the monoclinic phase of the CuO was revealed from the HRTEM images XRD analysis indicated a monoclinic tenorite crystalline phase of the synthesized CuO nanosheets. The average crystallite size for leaf-shaped CuO nanosheets was found to be 14.28 nm. Furthermore, a chemo-resistive-type gas sensor based on leaf-shaped CuO nanosheets was fabricated to effectively and selectively detect H2S gas. The fabricated sensor showed maximum gas response at an optimized temperature of 300 °C towards 200 ppm H2S gas. The corresponding response and recovery times were 97 s and 100 s, respectively. The leaf-shaped CuO nanosheets-based gas sensor also exhibited excellent selectivity towards H2S gas as compared to other analyte gases including NH3, CH3OH, CH3CH2OH, CO and H2. Finally, we have proposed a gas sensing mechanism based upon the formation of chemo-resistive CuO nanosheets.
Highlights
Leaf-shaped cupric oxide (CuO) nanosheets were grown by a low temperature solution process
The Scotch Durant bottle was placed in an oven and maintained the temperature at 70 ◦ C for 24 h
The desired product was dried at 80 ◦ C to obtain CuO powder
Summary
Vehicular and other industrial activities are adding a variety of harmful toxic gases tremendously to the environment daily. Continuous exposure to such gases is the cause of serious health related problems in humans [1,2]. One such harmful gas is hydrogen sulfide (H2 S) which is highly corrosive, inflammable, and explosive, an extremely hazardous gas. Exposure to low concentrations of H2 S gas may cause a sore throat, coughing, skin itching, eye irritation and inflammation and irritation in the respiratory track, etc. Exposure to high concentrations (>100 ppm) may lead
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.