Abstract

Multifunctional terahertz devices hold great promise for terahertz (THz) optical systems. Here, we present an ultrathin, highly flexible and optically transparent terahertz polarizer based on tin-doped indium oxide (ITO) and flexible conformal films of polyethylene terephthalate. The flexible optical transparent polarizer (FOTP) was theoretically investigated and experimentally characterized by UV–vis spectrophotometry and THz time-domain system. In the FOTP, THz conductivity of ITO films is mainly dominated by DC conductivity. The FOTP reveals a high optical transmittance of more than 60% in the visible region, a high extinction ratio of about 20 dB in the 0.1 THz–2.5 THz and a low insertion loss below 2 dB in the 0.1 THz–1.4 THz. The proposed FOTP can significantly improve the overall performance of THz optical systems and be easily fabricated by commercial display techniques. Our concept opens up a new window for highly flexible and optically transparent THz devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.