Abstract

A highly efficient fluorosensor based on ultrathin graphitic carbon nitride (g-C₃N₄) nanosheets for Cu(2+) was developed. In the absence of metal ions, the nanosheets exhibit high fluorescence; the strong coordination of the Lewis basic sites on them to metal ions, however, causes fluorescence quenching via photoinduced electron transfer leading to the qualitative and semiquantitative detection of metal ions. This fluorosensor exhibits high selectivity toward Cu(2+). The whole detection process can be completed within 10 min with a detection limit as low as 0.5 nM. The use of test paper enables the naked-eye detection of Cu(2+) with a detection limit of 0.1 nmol. The practical use of this sensor for Cu(2+) determination in real water samples was also demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call