Abstract

An ultra-wideband fiber optic acoustic sensor based on graphene diaphragm with a thickness of 10nm has been proposed and experimentally demonstrated. The two reflectors of the extrinsic Fabry-Perot interferometer is consist of fiber endface and graphene diaphragm, and the cavity is like a horn-shape. The radius of the effective area of the ultrathin graphene diaphragm is 1mm. Attributed to the strong van der Waals force between the diaphragm and the ceramic ferrule, the sensor head can be applied not only in the air but also underwater. Experimental results illustrate that ultra-wideband frequency response is from 5Hz to 0.8MHz, covering the range from infrasound to ultrasound. The noise-limited minimum detectable pressure level of 0.77Pa/Hz1/2@5Hz and 33.97μPa/Hz1/2@10kHz can be achieved, and the applied sound pressure is 114dB and 65.8dB, respectively. The fiber optic acoustic sensor may have a great potential in seismic wave monitoring, photoacoustic spectroscopy and photoacoustic imaging application due to its compact structure, simple manufacturing, and low cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.