Abstract

Simultaneous control of phase and polarization offers a large degree of freedom to tailor the beam properties, for instance, enabling generation of structured beams such as vector beams and vector vortex beams. Here, we propose an ultrathin freestanding metasurface operating at the terahertz frequency for efficient generation of vector vortex beam with an arbitrarily defined topological charge from linearly polarized excitation. The metasurface is composed of bilayer metallic patterns separated by a thin quartz slab, with one layer determining the transmission polarization and the other controlling the transmission phase. The tightly cascaded two layers form a Fabry-Perot cavity to maximize the efficiency of the polarization and phase control. Two metasurfaces for generation of radially polarized vector beam with uniform phase and vortex phase are fabricated and tested at 0.14 THz. The experimental results successfully demonstrate the generation of high-quality vector beams with the desired phase. In the experiment, the ultrathin and freestanding properties allow the metasurface to be easily combined with other components, which shows great potential for the development of various compact terahertz systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.