Abstract

AbstractThe attachment of display devices to various objects has attracted much attention due to their ability to present visual information to people in different environments. Such devices should be ultrathin to ensure complete coverage when attached to various objects, making them a critical technology for the development of rollable and stretchable displays. In this study, the fabrication of high‐performance ultrathin oxide thin‐film transistors (TFTs) on a 5 µm‐thick polyethylene terephthalate substrate is demonstrated by the method of delamination and transfer. Molybdenum oxide functions as an exfoliation layer, and the ultrathin devices exhibit full coverage on various objects with complex surface profiles such as contact lens, fabric, and human skin. It is notable that the TFT device exhibits a high optical transparency of greater than 81% and a reasonable electrical performance with a high mobility of 37 cm2 V−1 s−1. Since the oxide TFTs are fabricated without temperature limitations, the devices show reliable electrical performances under gate and illumination stresses. The flexible devices also exhibit excellent transfer characteristics in the bending state, regardless of the bending radius and direction, as well as a high mechanical durability of over 10 000 bending cycles with the bending radius of 3 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call