Abstract

We demonstrated an optically-active antireflection, light absorbing, optical coating as a hydrogen gas sensor. The optical coating consists of an ultrathin 20 nm thick palladium film on a 60 nm thick germanium layer. The ultrathin thickness of the Pd film (20 nm) mitigates mechanical deformation and leads to robust operation. The measurable quantities of the sensors are the shift in the reflection minimum and the change in the full width at half maximum of the reflection spectrum as a function of hydrogen gas concentration. At a hydrogen gas concentration of 4%, the reflection minimum shifted by ∼46 nm and the FWHM increased by ∼228 nm. The sensor showed excellent sensitivity, demonstrating a 6.5 nm wavelength shift for 0.7% hydrogen concentration, which is a significant improvement over other nanophotonic hydrogen sensing methods. Although the sensor’s response showed hysteresis after cycling hydrogen exposure, the sensor is robust and showed no deterioration in its optical response after hydrogen deintercalation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.