Abstract

Ultrathin MoSe2/graphene hybrids have been successfully synthesized through a facile ionic liquid-assisted hydrothermal approach. The resultant hybrids are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). It is revealed that the MoSe2 nanosheets in the hybrids exhibit a graphene-like few-layered structural characteristic of 2–3 layers and are well dispersed and anchored on the large flexible graphene sheets. When evaluated as an anode for LIBs, the obtained MoSe2/graphene hybrid electrode demonstrates preferable electrochemical performances with high reversible lithium-storage capacity of ∼1100 mAh g−1, superior cyclic stability and excellent rate capability. The extraordinary electrochemical properties can be ascribed to the novel hybrid structures composed of ultrathin few-layered MoSe2 nanosheets and highly conductive graphene as well as the resultant maximized synergistic effect between MoSe2 and graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.