Abstract

ABSTRACTWe have fabricated Pr-based high-k gate dielectric films by physical vapor deposition of metallic Pr on SiO2 under ultra-high vacuum (UHV) conditions at room temperature, followed by oxidation and annealing steps. The films have been analyzed by electrical measurements, X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). Some insight into the physical processes involved has been obtained from ab initio calculations. The high-k gate stacks consist of a SiO2-based buffer with an enhanced dielectric constant and a Pr silicate barrier with a high dielectric constant. The role of the buffer is to preserve the high quality of the SiO2/Si(001) interface, and the role of the barrier is to keep the tunneling currents low by increasing its physical thickness. A Pr film deposited on a 1.8 nm SiO2 layer, oxidized at room temperature by air, and annealed in N2 atmosphere with O2 partial pressure of 10−3 mbar results in a stack with the Capacitance Equivalent Thickness of 1.5 nm and leakage of 10−4 A/cm2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.