Abstract
Ultrathin carbon nanomembranes (CNM) have been tested as supports for both cryogenic high-resolution transmission electron microscopy (cryo-EM) as well as atomic force microscopy (AFM) of biological specimens. Purple membrane (PM) from Halobacterium salinarum, a 2-D crystalline monolayer of bacteriorhodopsin (BR) and lipids, was used for this study. Due to their low thickness of just 1.6 nm CNM add virtually no phase contrast to the transmission pattern. This is an important advantage over commonly used amorphous carbon support films which become instable below a thickness of approximately 20 nm. Moreover, the electrical conductivity of CNM can be tuned leading to conductive carbon nanomembranes (cCNM). cCNM support films were analyzed for the first time and were found to ideally meet all requirements of cryo-EM of insulating biological samples. A projection map of PM on cCNM at 4 A resolution has been calculated which proves that the structural integrity of biological samples is preserved up to the high-resolution range. CNM have also proven to be suitable supports for AFM analysis of biological samples. PM on CNM was imaged at molecular resolution and single molecule force spectra were recorded which show no differences compared to force spectra of PM obtained with other substrates. This is the first demonstration of a support film material which meets the requirements of both, cryo-EM and AFM, thus enabling comparative structural studies of biomolecular samples with unchanged sample-substrate interactions. Beyond high-resolution cryo-EM of biological samples, cCNM are attractive new substrates for other biophysical techniques which require conductive supports, i.e. scanning tunneling microscopy (STM) and electrostatic force microscopy (EFM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.