Abstract

Rechargeable potassium-ion batteries (PIBs) are regarded as potential substitutes for industrial lithium-ion batteries in large scale energy storage systems due to the world's abundant potassium supplies. Althogh cobalt hexacyanocobaltate (CoHCC) exhibits broad potential as a PIB anode material, its performance is currently unsatisfactory. Herein, novel 5 nm scale ultrathin CoHCC nanosheet-assembled nanoboxes with interspersed carbon nanotubes (CNTs/CoHCC nanoboxes) are fabricated to realize a highly reactive PIB anode. The ultrathin CoHCC layers substantially accelerate electron conduction and provide numerous active sites, while the connected CNTs provide fast axial electron transport. Consequently, the optimized anode exhibits a remarkable discharge capacity of 580.9 mAh g-1 at 0.1 A g-1 and long-term stability with 71.3% retention over 1000 cycles. In situ and ex situ characterizations and density functional theory calculations are further employed to elucidate the K+ storage process and the reason for the enhanced performance of the CNTs/CoHCC nanoboxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.