Abstract

ABSTRACTWe report on the utilization of an ultrathin buffer layer at the organic/organic (O/O) interface to enhance device efficiency in organic light‐emitting diodes. Two different kinds of buffer layers are examined: metal and dielectric. It is shown that employment of an ultrathin Ag layer with a thickness of 1–2 nm enhances the device performance, while a MgF2 dielectric buffer cannot affect the device properties considerably. In particular, the turn‐on voltage of the device with an appropriate buffer layer is reduced about 3 V, its current efficiency increases by a factor of more than three, and the power efficiency increases by a factor of more than five in comparison to the control device when a Ag buffer layer is introduced at the O/O interface. By employment of the buffer layer at the interface, an accumulation of current carriers appears within the device that redistribute the recombination profile toward the interior part of the emissive layer. Also, morphological examinations reveal that distinguishable phase segregation occurs in the blend of the hole‐transport layer. In particular, the polymer component remains at the surface and facilitates the hole transport into the successive layers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43894.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.