Abstract
Lattice matched 0.25-μm gatelength InAlN/GaN high electron mobility transistors are realized in an ultrathin body mesa technology (50-nm AlN nucleation layer/50-nm GaN buffer) on sapphire. At room temperature, the maximum output current density is I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DS</sub> =0.4A/mm, the threshold voltage V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> =-1.4 V with an associated subthreshold voltage swing of 73 mV/dec and a leakage current ≈ 1 pA (for W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</sub> =50 μm) and thus a current on/off ratio of 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sup> . At 600°C, the maximum drain current, threshold voltage, and transconductance are nearly unchanged. The current on/off ratio is still approximately 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> . First 1-MHz class A measurements with ±2.0 V peak-to-peak signal amplitude have resulted in 109-mW/mm output power at V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DS</sub> =8.75 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.