Abstract

Miniaturized solid state capacitors leveraging migration of unipolar ions in a single polyelectrolyte layer sandwiched between metal electrodes, namely, polyelectrolyte capacitors (PECs), have been recently reported with areal capacitance up to 100-200nF mm-2. Nonetheless, application of PECs in consumer and industrial electronics has been hindered so far by their small operational frequency range, up to a few kHz, due to the resistive behavior (phase angle >-45°) of PECs in the range kHz-to-MHz. Here,it is reported on multilayer polyelectrolyte capacitors (mPECs) that leverage as dielectric an ambipolar nanometer-thick (down to 10nm) stack of anionic and cationic polyelectrolytes assembled layer-by-layer between metal electrodes to eliminate the resistive behavior at frequencies from kHz to MHz. This significantly extends the operational range of mPECs over PECs. mPECs with areal capacitance as high as 25nF mm-2 at 20Hz and full capacitive behavior from 100 mHz to 10MHz are demonstrated using different assembling conditions and anionic/cationic polyelectrolyte pairs. The mPECs reliably operate over time for >300 million cycles, at different biasing voltages up to 3V, and temperatures up to 80°C, showing a reversible capacitive behavior without significant hysteresis. Application of mPECs in flexible electronics, also operating at high frequency, is envisaged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call