Abstract

Retroreflectors that can accurately redirect the incident waves in free space back along their original channels provide unprecedented opportunities for light manipulation. However, to the best of our knowledge, they suffer from either the bulky size, narrow angular bandwidths, or time-consuming postprocessing, which essentially limits their further applications. Here, a scheme for designing ultrathin all-angle real-time retroreflectors based on hyperbolic plasmonic metasurfaces is proposed and experimentally demonstrated. The physical mechanism underlying the scheme is the orthogonality between the traveling waves in free space and the canalized spoof surface plasmon on the hyperbolic plasmonic metasurfaces, which guarantee their high-efficiency and all-angle mutual conversion. In this case, the strong confinement characteristic that benefited from the enhanced light-matter interaction enables us to route and retroreflect the canalized spoof surface plasmon with extremely thin structures. As proof of the scheme, a retroreflector prototype with a thickness approximately equal to the central wavelength is designed and fabricated. Further experimental investigation obtains a half-power field of view up to 53° and a maximum efficiency of 83.2%. This scheme can find promising applications in target detection, remote sensing, and diverse on-chip light control devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.