Abstract
Single-atom nanozymes (SAzymes) have obtained increasing interest to mimic natural enzymes for efficient cancer therapy, while challenged by chemoresistance from cellular redox homeostasis and the interface of reductive species in tumor microenvironment (TME). Herein, a dual single-atomic ultrathin 2D metal organic framework (MOF) nanosheet of multienzyme (Pd/Cu SAzyme@Dzy) is prepared to synergistically overcome chemoresistance for multienzyme enhanced cancer catalytic therapy. The Pd SAzyme exhibits peroxidase (POD)-like catalytic activity for overcoming chemoresistance via disturbing cellular redox balance. This is further enhanced by cascade generation of more ∙OH via Cu+ -catalyzed POD-like reactions, initiated by in situ-reduction of Cu2+ into Cu+ upon GSH depletion. This process can also avoid the consumption of ∙OH by endogenous reductive GSH in TME, ensuring the adequate amount of ∙OH for highly efficient therapy. Besides, the DNAzyme is also delivered for gene therapy of silencing cancer-cell-targeting VEGFR2 protein to further enhance the therapy. Based on both experiments and theoretical calculations, the synergetic multienzyme-based cancer therapy is examined and the enhancement by the cascade tumor antichemoresistance is revealed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.