Abstract

The ultrathin two-dimensional (2D) transition metal oxides and hydroxides (TMO and TMH) nanosheets are attractive for creating high-performance energy storage devices due to a set of unique physical and chemical properties. Flat 2D structure of such materials provides a sufficient number of active adsorption centers, and the ultra-small thickness, on the order of several nanometers, provides fast charge transfer, which significantly improves electronic conductivity. This brief review summarizes recent progress in the synthesis of materials based on ultrathin 2D nanosheets for energy storage applications, including pseudocapacitors, lithium-ion batteries, and other rechargeable devices. The review also presents examples of representative work on the synthesis of ultrathin 2D nanomaterials based on TMO and TMH for various power sources. In conclusion, the article discusses possible prospects and directions for further development of methods and routes for the synthesis of ultrathin two-dimensional transition metal oxides and hydroxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call