Abstract

Gene silencing holds promise for cancer therapeutics because of its potential to inhibit genes involved in tumor development. However, gene silencing is still restricted by its limited efficacy and safety. Nanoscale coordination polymers (CPs) emerge as promising nanocarriers for gene delivery, but their responsiveness and potential therapeutic properties have rarely been explored simultaneously. Here, multifunctional ultrathin 2D nanosheets of Cu(I) 1,2,4-triazolate CP with a thickness of 4.5 ± 0.8 nm are synthesized using a bottom-up method. These CP nanosheets can act as both an effective DNAzyme nanocarrier for gene therapy and an intrinsic photosensitizer for hypoxia-tolerant type I photodynamic therapy (PDT), which is ascribed to the Fenton-like reaction. Because of the glutathione (GSH)-responsiveness of the CP nanosheets, DNAzyme-loaded CP nanosheets exhibit excellent cancer-cell-targeting gene silencing of the early growth response factor-1 (EGR-1), with messenger RNA inhibited by 84% in MCF-7 (human breast cancer cells) and only 6% in MCF-10A (normal human mammary epithelial cells). After tail intravenous injection into MCF-7-tumor-bearing mice, the CP nanosheets loaded with chlorin-e6-modified DNAzyme under photoirradiation show a high antitumor efficacy (88.0% tumor regression), demonstrating a promising therapeutic platform with efficient and selective gene silencing and PDT of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.