Abstract

Ultra-thick, dense alloy-type anodes are promising for achieving large areal and volumetric performance in potassium-ion batteries (PIBs), but severe volume expansion as well as sluggish ion and electron diffusion kinetics heavily impede their widespread application. Herein, we design highly dense (3.1 ​g ​cm−3) Ti3C2Tx MXene and graphene dual-encapsulated nano-Sb monolith architectures (HD-Sb@Ti3C2Tx-G) with high-conductivity elastic networks (1560 ​S ​m−1) and compact dually encapsulated structures, which exhibit a large volumetric capacity of 1780.2 ​mAh cm−3 (gravimetric capacity: 565.0 ​mAh g−1), a long-term stable lifespan of 500 cycles with 82% retention, and a large areal capacity of 8.6 ​mAh cm−2 (loading: 31 ​mg ​cm−2) in PIBs. Using ex-situ SEM, in-situ TEM, kinetic investigations, and theoretical calculations, we reveal that the excellent areal and volumetric performance mechanism stems from the three dimensional (3D) high-conductivity elastic networks and the dual-encapsulated Sb architecture of Ti3C2Tx and graphene; these effectively mitigate against volume expansion and the pulverization of Sb, offering good electrolyte penetration and rapid ionic/electronic transmission. Ti3C2Tx also decreases the K+ diffusion energy barrier, and the ultra-thick compact electrode ensures volumetric and areal performance. These findings provide a feasible strategy for fabricating ultra-thick, dense alloy-type electrodes to achieve high areal and volumetric capacity energy storage via highly-dense, dual-encapsulated architectures with conductive elastic networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call