Abstract
We examined nucleus pulposus notochordal cells of individuals ranging in age from the eighth week of fetal life to 32 years of age. With increasing age, notochordal cell structure changed, as did the cell-to-cell relationships and the cell-to-matrix relationships. All notochordal cells contained normal organelles, including welldeveloped endoplasmic reticulum, but, in addition, fetal notochordal cells demonstrated an unusual relationship between rough endoplasmic reticulum and mitochondria: elements of the rough endoplasmic reticulum encircled almost every mitochondrion. Fetal notochordal cells contained large amounts of glycogen, while older cells had much smaller glycogen deposits. Cytoplasmic filaments were observed in cells of all ages. The cells formed tightly packed clusters in the fetus with little, if any, extracellular matrix between individual cells. Cells separated from each other with age and by the twenty-first week of fetal life, only slender strands of cytoplasm connected them. Previous light microscopic studies described notochordal cells as ‘physaliphorus’ cells since they appeared to contain large cytoplasmic vacuoles. However, electron microscopy showed that these apparent vacuoles consist of extracellular matrix surrounded by cells or cell processes. The structure of notochordal cells and their persistence in the nucleus pulposus after fetal life suggest that they may have a significant role in the formation and maintenance of the nucleus pulposus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.