Abstract
Reconstitution of highly purified aquaporin CHIP (channel-forming integral protein) into proteoliposomes was previously shown to confer high osmotic water permeability (Pf) to the membranes [Zeidel et al. (1992) Biochemistry 31, 7436-7440]. Here we report detailed ultrastructural, pharmacologic, and transport studies of human red cell CHIP in proteoliposomes. Freeze-fracture and transmission electron microscopy revealed a uniform distribution of CHIP which was incorporated into the membranes in both native and inverse orientations. Morphometric analysis of membranes reconstituted at three different concentrations of CHIP revealed that the intramembrane particles correspond to tetramers or possible higher order oligomers, and the Pf increased in direct proportion to the CHIP density. Proteolytic removal of the 4-kDa C-terminal cytoplasmic domain of CHIP did not alter the Pf or oligomerization in red cell membranes. CHIP exhibited a similar conductance for water when reconstituted into membranes of varied lipid compositions. The sensitivities of CHIP-mediated Pf to specific sulfhydryl reagents were identical to known sensitivities of red cell Pf, including a delayed response to p-(chloromercuri)benzenesulfonate. CHIP did not increase the permeability of the proteoliposome membranes to H+/OH- or NH3. These studies demonstrate that CHIP proteoliposomes exhibit all known characteristics of water channels in native red cells and therefore provide a defined system for biophysical analysis of transmembrane water movements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.