Abstract

The trophozoit of Noctiluca miliaris has a large nucleus (30 μ) with several nucleoli of considerable size that contain DNA fibrillae lying in the interspaces. — Before and during the first sporogenetic divisions, the nucleoli disintegrate, releasing towards the cytoplasma numerous groups of ribonucleic granules passing through the nuclear ampullae. At the end of the sporulation, there are no nucleoli visible in the nuclei and no ampullae. — The nucleoplasm diminishes, as the DNA filaments are built up, to form the meshes of a network which limit the masses of chromatic material that take the shape of chromosomes characterized by regular fibrillar arches, at the 8–16 nuclei stage. In their centre, there is an axial structure which remains intact during the chromosomal segregation; its function during mitosis seems to be important: supplementary layers of arches appear at this level. — The progressive condensation of the chromosomes is correlated to the sporogenetic evolution of the nuclei, not to the different phases of the mitotic cycle. — The karyokinesis is brought about, during early stages, by mere splitting of the chromatic mass and of its envelope, and later one by separation into two lots of chromosomes. The segregation of these chromosomes is effected by partial intervention and growth of the envelope of the nucleus; there is no centromeric structure visible. At the end of divisions, the nucleus is almost entirely formed by its chromosomes. — The nucleolar structure, the karyokinesis, the structure of the nuclear envelope and the chromosomal cycle show the particularly high evolution of Noctiluca, within the Dinoflagellata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.