Abstract
The purposes of this study were to prepare experimental titanium-coated plastic implants suitable for electron microscopy examination of the titanium-bone interface and the response of tissue surrounding titanium, and to histologically compare surrounding tissue responses in coated and uncoated implants. Experimental plastic implants were prepared from a plastic rod coated with a thin film of titanium. Plastic implants without coatings were used as controls. The implants were placed into tibiae of 10-week-old male rats. The specimens with implants were harvested 4 weeks after placement and observed under a light microscope, a transmission electron microscope, and a scanning electron microscope. In the transmission electron microscopy, the titanium layer of the experimental implant was a uniform layer that was approximately 150- to 250-nm wide. The new bone formation was observed around both titanium-coated implants and plastic implants. However, there was no direct bone contact with the plastic implant. The responses of tissue surrounding the experimental implants varied. Under an electron microscope, the following areas were observed: (1) an area with a direct contact between the titanium and bone, (2) an area at the interface where an amorphous layer was observed, (3) an area with progressing calcification in the surrounding tissue where the cells were adjacent to the titanium surface, and (4) an area in which bone resorption and apposition were observed and remodeling was thought to be occurring. The experimental titanium was homogenous and was considered to be highly useful in observing the responses of the surrounding tissue to the titanium surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.