Abstract
In the present study, transmission electron microscopy (TEM) has been used to study the ultrastructure of the digestive system, namely the pharynx, oesophageal glands and intestine, of the monogenean skin and fin parasite Macrogyrodactylus congolensis. The pharynx consists of an anterior highly muscular region and a posterior mainly glandular syncytial region. The anterior region is provided with six pharyngeal papillae, the centre of each of which is occupied by electron dense secretory bodies, identical with those in the posterior region of the pharynx. The intestine has an uninterrupted syncytial gastrodermis and the luminal surface is provided with many unbranched lamellae. The intestine of living specimens contains large and small granules which give it a reddish brown colour. Large particles, presumed to be lipid droplets, and small granules, presumed to be melanin granules, were found in the gastrodermis and in the intestinal lumen. Parasites were induced to feed and then preserved for TEM at the following intervals: just after feeding, 30 min after feeding, 1 h 30 min after feeding and 2 h after feeding. The specimens were then processed for TEM and sections cut through the intestine of each specimen were examined with the transmission electron microscope. Three types of vacuoles (V1, V2, V3) were detected in the gastrodermis. Vacuoles V1 have thick walls and are likely to be endocytotic, enclosing luminal contents at the surface of the gastrodermis. V2 vacuoles may be lysosomes that fuse with V1 vacuoles. V3 vacuoles may serve to dispose of residual digestive material into the lumen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.