Abstract

Taste buds in the mudpuppy Necturus maculosus were examined with electron microscopy. Three cell types (dark, light, and basal) were identified and reconstructed from serial thick sections. Dark and light cells extend from the basal lamina to the surface of the tongue. The apical process of the dark cells was usually quite lamellar when viewed in cross section, in contrast to light cells, whose apical process appeared more cylindrical. Basal cells are situated at the base of the bud and do not extend processes to the surface of the tongue. The cytoplasm of basal cells contains numerous clear and dense-cored vesicles. Small, spinelike processes (2-3 microns in length) project outward from the basal cells into the cytoplasm of the surrounding tast receptor cells. Morphologically, basal cells in mudpuppy taste buds resemble Merkel cells. Unmyelinated afferent nerve fibers enter the taste bud at the base and course through the lower portion of the bud. Synapses were found between taste receptor cells and nerve fibers, between basal cells and nerve fibers, and between basal cells and taste receptor cells. Over 65% of the synapses observed in the mudpuppy taste bud involved the basal cell. These findings suggest that basal cells play some role in chemosensory signal processing or integration of the taste response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call