Abstract
Classic Refsum disease (RD) is a rare, autosomal recessively-inherited disorder of peroxisome metabolism due to a defect in the initial step in the alpha oxidation of phytanic acid (PA), a C16 saturated fatty acid with four methyl side groups, which accumulates in plasma and lipid enriched tissues (please see van den Brink and Wanders, Cell Mol Life Sci 63:1752-1765, 2006). It has been proposed that the disease complex in RD is in part due to the high affinity of phytanic acid for retinoid X receptors and peroxisome proliferator-activated receptors. Structurally, epidermal hyperplasia, increased numbers of cornified cell layers, presence of cells with lipid droplets in stratum basale and reduction of granular layer to a single layer have been reported by Blanchet-Bardon et al. (The ichthyoses, SP Medical & Scientific Books, New York, pp 65-69, 1978). However, lamellar body (LB) density and secretion were reportedly normal. We recently examined biopsies from four unrelated patients, using both OsO4 and RuO4 post-fixation to evaluate the barrier lipid structural organization. Although lamellar body density appeared normal, individual organelles often had distorted shape, or had non-lamellar domains interspersed with lamellar structures. Some of the organelles seemed to lack lamellar contents altogether, showing instead uniformly electron-dense contents. In addition, we also observed mitochondrial abnormalities in the nucleated epidermis. Stratum granulosum-stratum corneum junctions also showed co-existence of non-lamellar and lamellar domains, indicative of lipid phase separation. Also, partial detachment or complete absence of corneocyte lipid envelopes (CLE) was seen in the stratum corneum of all RD patients. In conclusion, abnormal LB contents, resulting in defective lamellar bilayers, as well as reduced CLEs, likely lead to impaired barrier function in RD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.