Abstract

The greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves terminate in overlapping patterns in the brainstem in the rat nucleus of the solitary tract (NTS). There is one region, in particular, that receives overlapping inputs from all three nerves and is especially plastic during normal and experimentally altered development. To provide the requisite data necessary ultimately to delineate the circuitry in this region, we characterized the morphology of the synaptic inputs provided by the GSP, CT, and IX nerves through transmission electron microscopy. Although all three nerves had features characteristic of excitatory nerve terminals, ultrastructural analysis revealed dimorphic morphologies differentiating IX terminals from GSP and CT terminals. IX terminals had a larger area than GSP and CT terminals, and more synapses were associated with IX terminals compared with GSP and CT terminals. Additionally, IX terminals formed synapses most often with spines, as opposed to GSP and CT terminals, which formed synapses more often with dendrites. IX terminals also exhibited morphological features often associated with synaptic plasticity more often than was seen for GSP and CT terminals. These normative data form the basis for future studies of developmentally and environmentally induced plasticity in the rodent brainstem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call