Abstract

Little is known about gastrodermal neurons and synapses in the tentacles of sea anemones. Using transmission electron microscopy of serial thin sections of Calliactis parasitica, we have identified both a sensory cell and a ganglion cell with granular vesicles originating from the Golgi complex and have identified four types of synapses in the tentacular gastrodermal nerve plexus. The sensory cell has a recessed apical cilium with a basal body and a perpendicularly oriented centriole, below which are several strands of striated rootlets surrounded by mitochondria. The ganglion cell lacks a cilium and resembles a bipolar neuron, with oppositely directed processes lying parallel to the basally located circular smooth muscle. Both one-way and two-way interneuronal synapses are present with 60- to 90-nm granular vesicles of various densities aligned at the paired electron-dense membranes and fine cross filaments in the intervening 13-nm cleft. Two types of neuroeffector synapses have been located. Dense granular vesicles are present at neuromuscular synapses, whereas less dense vesicles are present at neuroglandular synapses. Most of the synaptic vesicles range from 60 to 120 nm in diameter. Two types of nerve cells and a variety of synaptic loci provide morphological substrates for the spontaneous SS2 conduction pulses in the tentacular gastrodermis of C. parasitica. J Morphol 231:217-223, 1997. © 1997 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.