Abstract
The location and structure of ferritin in the parenchyma of leaf minor veins of the common ice plant (Mesembryanthemum crystallinum L.) treated with exogenous putrescine under salinity conditions were investigated by electron microscopy. Considerable aggregates of ferritin were detected in the chloroplasts of bundle sheath cells, in companion phloem cells, and other parenchyma cells of leaf minor veins. The structure of ferritin in the vascular parenchyma chloroplasts suggests that it was partially degraded and converted to phytosiderin. This point of view is based on indistinct structure of Fe-containing cores of ferritin molecules, break of distance between the cores, and their pronounced ability to aggregate and produce larger structures. Aggregation of Fe-containing cores apparently pointed to the destruction of ferritin protein envelope or its partial degradation. In a certain stage of ferritin destruction, electron-dense material and the structures resembling small vesicles appeared between the Fe-containing cores. Electron-dense inclusions, whose structure was similar to that of phytosiderin, were also detected in the vacuoles. Examination of the cross sections done without additional staining showed that the same as ferritin, phytosiderin in the chloroplasts and vacuoles was dark-colored against weakly colored cellular structures. In the vascular parenchyma of control plant leaves, the level of ferritin and phytosiderin was greater than in the mesophyll and much lower than in the plants simultaneously treated with NaCl and putrescine. In control material, iron cores of ferritin and phytosiderin were more light-colored and 2–3 times smaller in size than in the experimental treatment. Destruction of ferritin essentially did not occur in the mesophyll but was observed in the chloroplasts of bundle sheath cells on the border between the mesophyll and vascular bundle. The presence of much ferritin and phytosiderin on the border between the mesophyll and the vessels is accounted for by the fact that the vascular parenchyma is a buffer area that maintains a specific concentration of iron in the mesophyll of leaves and other parts of the plant. Within the cell, the role of such a buffer is performed by ferritin and vacuoles. Transformation of ferritin to insoluble hydrophobic phytosiderin is supposed to be an efficient way of withdrawing the excess of active iron from the cellular metabolism and therefore of relaxing oxidative stress. Ferritin and phytosiderin were detected not only in parenchyma cells of leaf minor veins but in sieve tubes as well. This suggests that iron may be transported within the plant as a component of protein complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.