Abstract
Plant species collected from various climatic zones and stressed in vitro at various temperatures reveal changes in cellular ultrastructure which are in accordance with the climate at their sampling sites. This observation initiated the investigation to establish if stress at different temperatures may cause diverse extents of changes in the ultrastructure of microalgal strains originating from different geographic zones. The study revealed that the six Cosmarium strains demonstrated ultrastructural characteristics that were consistent with their source location under optimal, low and high temperature conditions, pointing to their preference to specific climatic niches. Interestingly, chloroplasts of all of the Cosmarium strains correspond to a sun-adapted type, which is concomitant with earlier statements that these strains are rendered as high-light adapted algae. The Cosmarium strains developed multiple ultrastructural responses which enabled them to cope with excessive temperatures, occasionally occurring in desmid natural habitats. The appearance of cubic membranes and increased number of plastoglobules may represent the first line in protection against high-temperature stress, which is accompanied by the alteration of protein synthesis and the appearance of stress granules in order to preserve cell homeostasis. However, the prolonged warm- or cold-temperature stress obviously initiated the programmed cell death, as concluded from the appearance of several ultrastructural features observed in all of the Cosmarium strains. The fair acclimation possibilities and the ability to undergo programmed cell death in order to save the population, certainly favor the cosmopolitan distribution of the genus Cosmarium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.