Abstract

The chloride cells in the interlamellar areas of the gills of young adult, anadromous sea lampreys, Petromyzon marinus L., captured in fresh water undergo structural modification during the adaptation of these animals to sea water. In fresh water the chloride cells are partially overlapped by mucus-secreting superficial cells and contain an extensive reticulum of cytoplasmic tubules, which are confluent with both lateral and basal plasma membranes, numerous mitochondria, a Golgi complex of moderate size, and numerous apical vesicles. Adaptation to sea water results in a retraction of the superficial cells, exposing the entire apical surface of the chloride cells, and a proliferation of both cytoplasmic tubules and mitochondria. Extensive enlargement of the Golgi complex in the chloride cells of these animals suggests the involvement of this organelle in the proliferation of cytoplasmic tubules. The extracellular tracer, ruthenium red, enters the tubules from the lateral or basal intercellular spaces in both freshwater- and seawater-adapted animals but never enters either tubules or vesicles from the apical surfaces, indicating that these are not confluent. The presence of dividing basal cells and newly-forming chloride cells, combined with evidence of degeneration of chloride cells, suggests that there is a turnover of this cell type. Both superficial and basal cells are phagocytic and involved in heterophagy of degenerating chloride cells. This phenomenon occurs in both fresh water and sea water indicating that the chloride cells may be functional in both environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call