Abstract

Although ferromagnetic material has been detected in the tissues of a variety of animals that are known or suspected to respond to magnetic fields, in only a few cases has the material been identified and its suitability for use in magnetoreception been determined. Using high-resolution transmission electron microscopy (HRTEM), we have studied magnetic particles isolated from ethmoid tissue of the sockeye salmon, Oncorhynchus nerka. Low-magnification electron micrographs showed chains containing up to 58 (median = 21-25) electron-dense particles that were held together by intimately attached organic material. The particle size range was 25-60 nm with a mean of 48 nm and a standard deviation of 8.5 nm. Elemental analysis, by energy-dispersive X-ray analysis (EDXA), electron diffraction patterns and HRTEM lattice images, showed that many of the particles were structurally well-ordered and crystallographically single-domain magnetite. These results imply that the production of the biomineral is under precise biological control. The crystal morphology was cubo-octahedral with the (111) faces of adjacent crystals lying perpendicular to the chain axis. The magnetic moments of the particles will therefore be aligned along the chain axis and will sum to produce a total moment dependent on the number of particles present in each chain. In the presence of the geomagnetic field, the mean moment for the particles will give a magnetic to thermal energy ratio of about 0.2. The corresponding calculations for individual chains gave two clusters of ratios ranging between 2.7 and 5.3 and between 6.6 and 9.5. The implications of these results in the possible use of the particles in magnetoreception are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.