Abstract

The fine structures of nuclear envelopes known to have different permeability properties were compared. Membranes of salivary gland cell nuclei of Drosophila (third instar) and Chironomus (prepupae), which are strong barriers to ion diffusion, and membranes of oocyte nuclei (germinal vesicle) of Xenopus and Triturus, which are much more ion-permeable, show no essential difference in size, frequency, and distribution of their membrane gaps ("pores") which could account for the marked disparities in membrane permeability. The gaps are occupied by diffuse electron-opaque material with occasional central regions of strong opacity. This material may possibly account for the high diffusion resistance of Drosophila and Chironomus nuclear envelopes, where the resistance is far too great to allow free diffusion through the gaps. But material of this kind is also present in the more permeable nuclear envelopes of Xenopus and Triturus oocytes, and there are no convincing structural differences discernible with the techniques employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.