Abstract

A modification of the tannic acid-metal salt method was applied as an ultrastructural stain for elastin. Thin sections of glutaraldehyde-fixed, embedded rat aorta and rabbit elastic cartilage, with and without osmication, were examined. Raising the pH of the tannic acid solution from 2.7 to 9.0 progressively increased the electron-density of elastic fibres and collagen fibrils in osmicated and unosmicated specimens. The maximum tannic acid staining of elastic fibres was observed in the pH range 7.0-9.0. Collagen staining, although less intense than that of elastic fibres, was also greatest in this pH range. Elastic fibres in osmicated specimens demonstrated the strongest tannic acid staining with a minimal increase in density of collagen and cell nuclei when compared to the unosmicated specimens. Sequential treatments of osmicated specimens with tannic acid pH 7.0-9.0, and uranyl acetate, pH 4.1, enhanced the density of the elastin intensely, increased collagen staining moderately, but hardly increased the density of nuclei and microfibrils. In elastase-digested osmicated specimens, all tannic acid (pH 7.0)-uranyl acetate-reactive elastin was selectively removed. These results demonstrate that all the neutral and alkaline tannic acid-uranyl acetate methods can be used as a postembedment stain for elastin specimens fixed in glutaraldehyde and osmium tetroxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call