Abstract

The present report deals with a densitometric study of the ultrastructural images of the urothelial membrane of rats in the following experimental conditions: (1) EFA-deficient (EFAD) rats; (2) EFA-sufficient (EFAS) rats; and (3) EFAD rats that were fed the EFAD diet for 30 weeks and received an EFAS diet for the following 10 weeks (EFAD/S group). On electron micrographs of the transitional epithelium of ureters and urinary bladder of these rats, optical density (OD) profiles of the urothelial unit membrane were recorded and digitized using a computer-controlled microdensitometer with a solid-state self-scanned photodiode array sensor. A Gaussian curve was adopted as a model for the distribution of electron-dense material in each osmiophilic leaflet. Gaussian parameters were used to estimate the thickness of the urothelial membrane and of each osmiophilic leaflet, and the amount of electron-dense material and the maximal electron density present in each leaflet. In EFAS rats, the thick urothelial membrane was asymmetric like that of the normal, resulting from a greater thickness of the outer leaflet and a greater electron density of the cytoplasmic one. In EFAD rats, a loss of the characteristic ultrastructural asymmetry and a decrease of the total thickness of the unit membrane were detected. These changes were partially reversed in the EFAD/S rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call