Abstract

A few studies of the morphogenesis of human herpesvirus (HHV) 6 type A and B (HHV-6A, -6B) have been performed using neurogenic, lymphoid, or epithelial cells. When human MT-4 T-lymphotropic virus type I (HTLV-I)-producing lymphoid cells were coinfected with HHV-6B in vitro, viral-specific proteins were clearly detected. We therefore attempted to detect virus particles at the ultrastructural level, focusing on the morphogenesis of such particles. Ultrastructurally, HHV-6B virus particles could be observed in the nuclei, cytoplasm, and extracellular spaces of MT-4 cells, in addition to extracellular HTLV-I particles of C type. In the nuclei, dense-cored or doughnut-shaped viral capsids were found, as well as peculiar tubular rods. When budding to perinuclear spaces, these intranuclear capsids exhibited a thin tegument on their surfaces. Distinct teguments were found in the intracytoplasmic particles, which budded into cytoplasmic vacuoles during the process of maturation. The mature particles were detected in the extracellular spaces and the intracytoplasmic vacuoles, with a distinct tegument and surface spikes. An electron-dense layer in the outer part of the tegument was found in some mature particles located in the extracellular space, but no such layer was detected in mature particles in intracytoplasmic vacuoles. No annulate lamellae, but intranuclear tubular rods, were found in the cytoplasm of MT-4 cells. These observations indicate that HHV-6B in MT-4 cells is similar to HHV-6A in fine structure, but differs from HHV-7 and HHV-8 in ultrastructural characteristics. Further comparisons of HHV-6B with HHV-6A, HHV-7, and HHV-8 are needed with regard to functional activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.